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1 Introduction

In this article we explore the consequences of search and matching frictions in housing mar-

kets for price and construction dynamics. We consider an environment in which both the

entry of new buyers and the construction of new houses are determined endogenously in

equilibrium. We show that in the presence of search frictions, house prices may exhibit short

term momentum, even if housing dividends are strictly mean�reverting. In the long run,

the construction of new homes eventually reduces the ratio of buyers to houses for sale, and

prices converge to their long-run values. In a calibrated version of the basic model with

housing dividends represented by local incomes, we �nd that substantial price momentum

can arise in the short-term. Although this basic model cannot account for su¢ cient vari-

ance in house prices relative to the magnitude of income �uctuations, we consider several

generalizations of the basic model that can be expected to improve its performance.

Housing market dynamics in US cities can be characterized by several key stylized facts,

which we discuss in Section 2.1 Firstly, most time-series variation in house prices is local in

nature, not national.2 This has motivated researchers to use local factors such as income,

regulations and construction costs to account for price movements. Secondly, houses prices

are very volatile when compared with per capita incomes and rents. This appears to be

true both at the in relative terms across cities and in aggregate. A third key observation is

that there is strong positive serial autocorrelation in house price appreciation over the short

term, but mean reversion in prices over longer periods.3 Finally, as Glaeser and Gyourko

(2006) highlight, there is strong short run persistence of construction rates with long�run

weak mean-reversion, and high volatility of construction levels within markets.

While the movements in house prices are reasonably well documented, Capozza, Hender-

shott and Mack (2004) point out that a well�developed behavioural theory to account for

them has proved di¢ cult to construct. Since the work of Case and Shiller (1989) and Cutler,

Poterba and Summers (1991), it has been recognized that movements in housing prices (like

those of many other assets) pose a challenge to strict versions of the e¢ cient markets view. In

particular, the fact that the strong positive autocorrelation of house price appreciation does

not appear to be explained by fundamentals suggests that a simple asset�pricing approach

1Glaeser and Gyourko (2008) also document these facts, but our approach is somewhat di¤erent.
2This has been noted in the US by Abraham and Hendershott (1996) and Del Negro and Otrok (2006),

but also in Canada by Allen, Amano, Byrne and Gregory (2007).
3See Abraham and Hendershott (1996), Capozza, Mack and Mayer (1997), Malkpezzi (1999) and Meen

(2002).
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alone may be of limited value.4 Many authors have gone further to argue that to explain

housing market dynamics, one must introduce aspects of irrationality and/or rule�of�thumb

behaviour.

There are several good reasons to suspect that search and matching frictions may play

an important role in housing markets. For example, the observed positive comovement

of prices and sales (Rios-Rull and Sanchez Marcos, 2007). and the fact that prices and

sales are negatively correlated with average time on the market (Krainer, 2008). As �rst

noted by Peach (1983) and more recently documented by Caplin and Leahy (2008), there

is signi�cant negative correlation between vacancies and price appreciation. Diaz and Jerez

(2009) suggest that allowing for competitive as opposed to random search can a¤ect price

movements because the division of the surplus between buyers and sellers may also depend

on the tightness of the market.

In this paper, we develop a framework that introduces frictions of these types into a

housing market where both the entry of new buyers and the construction of new houses

evolve endogenously. The value of living in a particular city is determined by an exogenous

housing dividend which we think of as relative income. New buyers enter the market as

renters and search for a house whenever the expected value of doing so exceeds their next

best alternative. New houses are constructed and o¤ered for sale or for rent whenever the

expected value of doing so is high enough relative to the costs of construction. Existing

owners may also put their houses up for sale or rent them out and exit the market when

they experience changes in their life situation, which we model as the realization of an

exogenous shock. We model trade in the housing market as characterized by directed search

as proposed by Moen (1997). We establish the existence of a unique stationary growth path

characterized by constant population growth (of home-owners and renters) and construction

rates.

We study the implications of shocks to relative income in two calibrated versions of the

model. We begin with a version in which the matching function is Cobb-Douglas. This

implies that surplus shares are independent of market tightness, so that the model is e¤ec-

tively equivalent to a random search model with Nash bargaining. We �nd that this model

can generate short term price momentum even in the absence of persistent income growth

(ie. even if shocks to incomes follow an AR(1) process). The reason is that, although an

initial rise in the value of living in a city generates an immediate increase in search activity,

it takes time for potential buyers to match with a house (indeed, the likelihood that an

4Case and Shiller (1989) argue that serial correlation in rents does not explain momentum in price changes.
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individual buyer �nds a match may decline somewhat). Although, sales and the probability

of selling rise immediately, construction of new housing takes time to respond. Even if the

value of searching subsequently declines (due to mean reversion), the number of searchers

may continue to rise and the stock of vacancies declines. Consequently, the ratio of buyers

to sellers continues to rise in the short term, further driving up the rate at which houses

sell and hence the value of a vacant house. Since, in equilibrium, house prices partly re�ect

this value, they rise too. Eventually, the stock of potential buyers starts to fall as they are

absorbed into the owner-occupied housing market, and the decline in vacancies slows (and

eventually reverses) as construction rates catch up. This causes the ratio of buyers to sellers

to decline so that prices eventually start to revert back towards their steady state values.

While this model generates both momentum and mean-reversion in prices, which models

without search frictions typically cannot, it accounts for less variance in both prices and

construction rates than, for example, the theory of Glaeser and Gyourko (2006). When,

however, we assume a generalized �urn-ball�variety as studied byAlbrecht, Gauthier, and

Vroman (2003), the variance of house prices rises signi�cantly. In such an environment, the

share of the surplus received by the buyer in any housing transaction is a decreasing function

of the ratio of buyers to sellers. Consequently, as buyers enter, the house price increases by

more than it would in a model with a �xed surplus splitin the random search case as buyers

enter, then falls by more as more houses are constructed in order to catch up with demand.

Thus, the introduction of competitive search increases the overall variance of prices, while

maintaining the initial momentum in growth rates.

Our analysis is closely related to two other recent papers on housing markets. Diaz and

Jerez (2009) also develop and calibrate a competitive search model of the housing market

and compare the implications of alternative matching functions. They adopt a version of

Wheaton�s (1990) model with no entry and no house construction and their conclusions are

largely based on a steady state analysis. Our analysis goes beyond this, but is motivated in

part by their insight that competitive search may magnify the e¤ects of exogenous changes on

house prices. Glaeser and Gyourko (2006) develop a dynamic, rational expectations model

with no search frictions. House prices are determined by relative income movements, which

induce entry in the short run, and housing supply conditions which pin down prices in the

long run. They calibrate a version of their model and study its dynamics driven by an

estimated ARMA(1,1) process on incomes. The possibility of short�term price momentum

and mean reversion in prices and construction arises because of the hump-shaped pattern
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of relative incomes.5 They �nd that their model is reasonably successful in accounting for

longer term movements in prices and construction and for overall volatility in the median

market. However, their calibrated model cannot generate any short term momentum in

prices and persistence in construction rates is too low.

Although a number of other papers have studied the role of search and matching frictions

in housing markets (e.g. Wheaton (1990), Krainer (2001) Albrecht at al. (2007), Head and

Lloyd-Ellis (2008)), these generally focus on the market for existing housing treating the

housing stock as �xed and consider steady state implications. While Caplin and Leahy

(1998) do consider the non-steady state implications of their model, they also assume a �xed

housing stock. In contrast, we focus on the role of frictions for the transitional dynamics of

prices and construction of new homes. Although we do allow for turnover of existing homes,

this is not crucial for the qualitative nature of price and investment dynamics (although it

does matter quantitatively). Models of housing investment and construction (e.g. Davis

and Heathcote, 2007 and Glaeser and Gyourko, 2006), on the other hand, generally abstract

from trading and matching frictions in the market for houses in order to focus on supply

side factors. In this paper we bring together aspects of both literatures.

In Section 2 we document some of the key empirical features of housing market dynamics.

We then go in Section 3 to develop the basic strucure of our model of housing and in section

4 we characterize the equilibrium. Section 5 discusses the stationary growth path of the

economy and Section 6 discusses some extensions to the basic model. Section 7 develops a

calibration scheme and in Section 8 we study the qualitative dynamic implications of the

model. In Section 9 we evaluate how well the model does quantitatively and Section 10 o¤ers

some concluding remarks. All proofs and extended derivations are in the appendix.

2 Empirical properties of house prices, incomes, and
population

2.1 Univariate Characterization of Prices

In this section we characterize the dynamics of relative house prices for a typical large US

city. To do this we use a panel of 101 cities with annual data between 1977 and 2008. We

5The also assume utility is decreasing in local population size which has a dampening e¤ect on prices.
However, in their calibration this e¤ect is tiny so, in fact, the shock process drives everything.
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estimate the following �xed e¤ects regresssion

�Pct =

TX
i=1

�i�Pct�i + �Pct�1 + �t + �c + "ct

where �Pct = Pct � Pct�1 and Pct represents the log of the average house price in city c and
time t. The terms �c and �t represent city level and time �xed e¤ects, respectively, and T

is the number of lags. The �rst column of Table 1 shows the estimates for the full sample.

We found that 1 lags of the growth in prices was necessary and su¢ cient to describe the

evolution of prices.

Table 1: Annual Panel (�xed e¤ect) estimates for price process
Parameter Full Sample Coastal Cities Inland Cities Truncated Sample

(1980-2008) (1980-2008) (1980-2008) (1980-2000)
101 cities 30 cities 71 cities 101 cities

�p 0.66 (41.97) 0.66 (23.57) 0.57 0.51 (27.64)
�p -0.14 (24.17) -0.15 (13.44) -0.14 -0.15 (18.35)
City dummies Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
�" 0.039 0.038 0.037 0.038
�� 0.010 0.01 0.007 0.009
� 0.069 0.062 0.037 0.053
R2 within 0.61 0.79 0.49 0.42
R2 between 0.35 0.38 0.52 0.59
R2 overall 0.60 0.78 0.49 0.42
# of obs. 2929 870 2059 2121

The IRFs for the implied AR(2) process followed by housing prices for the average city

in each sample are illustrated in Figure 1. As can be seen, the house prices dynamics

can be characterized as exhibiting a hump-shaped pattern, with initial autocorrelation and

subsequent mean-reversion. The peak in the IRF occurs after about 3 years and after about

6 years the autocorrelation becomes negative.

Several authors (e.g. Capozza et al. 2004, Glaeser et al. 2008, ) have argued that there is

substantial heterogeneity across housing markets. In particular, they argue that coastal and

inland markets faces very di¤erent constraints which are re�ected in housing construction

costs and price dynamics. To assess the implications of this we divide our sample into

coastal and inland cities and re-estimate the panel regression (see columns two and three
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of Table 1). Using these we generate the implied IRFs which are depicted in the bottom

panel of Figure 1. While the overall hump-shaped dynamics are similar, one can see that the

initial autocorrelation is much more substantial for coastal cities, whereas the prices remain

persistently high for inland cities, mean-reverting more slowly.

Recent events in the housing markets have been particularly unusual with average prices

rising rapidly until 2007 and then collapsing with the housing bust. To assess the implication

of this turmoil, we estimate the panel regression on a truncated sample period going only

up to 2000. Note that because we are looking at price movements across cities relative to

the mean, the average run up in prices between 2000 and 2008 does not necessarily imply

that our estimates must be any di¤erent. Nonetheless we do �nd that the impied IRF based

on the estimated model during the early period involve less momentum. Interestingly, the

estimates and the IRF for the truncated sample is similar to those for inland cities estimated

over the full sample period.

2.2 A Structural Panel VECM

The theory that we develop below implies the following: a positive shock to income, which has

persistent e¤ects, induces households to enter a city more rapidly which, in turn, drives up the

demand for housing relative to trend. The consequent rise in house prices (and rents) stems

the rate of entry to some extent. Depending on the extent of frictions in housing markets, the

ratio of buyers to sellers may continue to rise, driving up prices further. However, eventually

incomes mean revert causing entry to slow relative to construction, prices decline and and

the economy coverges back to its long run trend.

This broad description motivates us to consider a structural panel VECM of the following

form:

��Xct = A�Xct�1 +BXct�1 + Fc + Ft + "ct

where Xct = [Yct; Pct; Nct]
0 denotes the vector of incomes per capita, average house prices

and populations in each city at each date, �, A and B are structural parameter matrices,

Fc is a vector city �xed e¤ects, Ft is a vector of time �xed e¤ects and "ct = ["Yct; "
P
ct; "

N
ct ]
0 are

the structural shocks. To estimate the structural parameters of this model, we must impose

a set of identifying restrictions. Speci�cally, we assume that that the structural shocks are

orthogonal and that � is triangular. The latter assumption e¤ectively imposes the assump-

tion that prices and population do not a¤ect per capita incomes contemporaneously and that
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Figure 1: IRFs for annual house prices
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prices do not a¤ect population contemporaneously. These restrictions seem reasonable in our

case. For example, although there could be agglomeration e¤ects of population on income,

this is likely to be a longer term e¤ect. Similarly, the e¤ect of house prices on incomes and

populations seems likely to occur only with a lag.6

Table 2: Moments from SPVECM �Income Shock
Relative Correlation Autocorrelation in growth rates
Std. Dev with Income 1 year 2 year 3 year 4 year

Incomes Overall 1.0 1.0 0.1300 -0.0509 -0.0792 -0.0750
Coastal 1.0 1.0 0.1250 -0.0125 -0.0325 -0.0339
Inland 1.0 1.0 0.1802 -0.0197 -0.0789 -0.0973
Truncated 1.0 1.0 0.1650 -0.0368 -0.0772 -0.0776

Prices Overall 1.6086 0.8775 0.7921 0.3872 0.0243 -0.2201
Coastal 1.0054 0.8362 0.7886 0.3699 0.0139 -0.2159
Inland 1.7805 0.8753 0.7979 0.4253 0.1170 -0.0924
Truncated 1.5266 0.9231 0.7794 0.3799 0.0659 -0.1286

Population Overall 0.4343 0.8453 0.6823 0.1987 0.0819 -0.2144
Coastal 0.5892 0.8260 0.7537 0.4173 0.1975 0.0807
Inland 1.0518 0.4270 0.7796 0.4591 0.1973 0.0057
Truncated 0.7038 0.6216 0.7379 0.4224 0.1864 0.0370

Table 5 provides key moments for incomes, prices and population movements based on

the SPVECM in each of the sub-sanples. These moments arise from isolating the impact

of structural shocks to income. Several, key observations are apparent. First, the standard

deviation in prices is between 1 and 1.8 times higher than that of per capita incomes. This

is lower than that suggested by Glaeser and Gyourko (2008) and stems from the fact that

the SPVECM isolates the e¤ect of income shocks. Second, the standard deviation of city

populations is between 0.4 and 1 times the standard deviation of income. Both prices

and populations are strongly positively correlated with per capita incomes, although for

inland cities this correlation seems weaker. The high and more persistent autocorrelation in

both house price appreciation and population growth relative to income growth can also be

observed in all the sub-samples. The degree of price momentum implied here is similar to

that estimated by Glaeser and Gyourko (2008) based on a panel regression of price growth

on its own lag, but is larger than implied our univariate ECM estimated above. Figure 2

depicts the impulse response functions in repsonse to a one percent income shock for each

of the sub-samples.
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Figure 2: IRFs based on structural VECM

3 The Environment

Time is discrete and indexed by t. We consider activity in a single housing market (e.g.

a city), treating activity outside the market as exogenous. The total population of the

economy, Qt; including households outside this particular housing market, grows at rate �.

At each date there is a stock of ex ante identical housing units Ht which can either be owned

or rented. There is also a measure of existing homeowners, Nt and a measure of existing

renters. Renters consist of those who are currently searching to buy a house, Bt, and those

who plan to remain as renters, Ft. The housing market therefore consists of vacant housing

6These restrictions are consistent with our theory anyway.
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which is for sale St = Ht � Nt � Bt � Ft and the measure of potential buyers, Bt, who
are currently renting. Houses for sale include both new houses that are currently owned by

developers and houses which are being sold by existing owners who are moving elsewhere.

Each period, households enter the city either as perpetual renters or as potential buyers. All

agents discount the future at the same rate � 2 (0; 1). We assume that capital markets are
perfect and that the interest rate is 1=�:

Households supply two types of labour: general labour, a unit of which is supplied inelas-

tically by each household, and construction labour, lt, whose supply is endogenous. General

labour earns yt per unit supplied and the construction labour of each household earns wt per

hour. Preferences over consumption, ct; construction labour supply and housing are given

by:

ujt(ct; lt; z
j
t ) = ct � v(lt) + zjt (1)

where

v(lt) =
l
1+ 1

�

t

�
1
�

�
1 + 1

�

� (2)

and zjt 2
�
zR; zH

	
denotes housing utility derived from renting or owning, respectively. The

quasi-linearity of preferences together with perfect capital markets imply that households

are indi¤erent about the timing of their consumption. Consequently their optimization

problem is equivalent to one where consumption is replaced by their income net of any

rental payments, rt
ct = yt + wtlt � rt: (3)

The solution to the (static) household labour supply problem yields

lt = l
s(wt) = �w

�
t : (4)

Substitution yields the following e¤ective utilities for owners and renters:

uHt (yt; wt) = yt + x(wt) + z
H (5)

uRt (yt; wt) = yt + x(wt) + z
R � rt (6)

where

x(wt) = wtl
s(wt)� v(ls(wt)) =

�w1+�t

1 + �
: (7)

We assume that each period any house that is not currently owner-occupied may be

o¤ered for sale or rented. A house that is rented earns the rent rt, but there is also a
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maintenance fee m that must be paid each period that the house is rented. There are no

frictions in the rental market. Houses that are designated for sale must remain vacant for at

least one period and the value of a vacant house at time t is denoted Vt. It follows that the

value of a house that is not currently owner�occupied is

eVt = max hrt �m+ �EteVt+1; Vti (8)

Existing homeowners may leave the city for exogenous reasons. Speci�cally, we assume

that with probability � owners experience a taste shock that drives their utility to zero

if they remain in their current house. In this event they move out immediately, receive an

exogenous continuation value, Z, and either put their house up for sale or rent it. We assume

that Z = �uR=(1� �) where �uR is the (endogenous) steady-state value of uRt . It follows that
the present value; Jt, of being a homeowner is given by

Jt = u
H
t + �

h
�
�
Z + Et ~Vt+1

�
+ (1� �)EtJt+1

i
: (9)

We impose the boundary condition that limT!1 �
TEtJt+T = 0.

In order to construct a new house, developers must �rst purchase land at unit price qt.

New houses either for rent or to own are constructed according to a simple linear production

function using labour e¤ort, Lt:

Ht+1 �Ht = �Lt (10)

where � is a productivity parameter. Houses constructed at time t become available either

for sale or for rent at time t+ 1 and there is no depreciation. We assume there is free entry

into construction. We denote the stock of housing that is for rented, HR
t , so that the stock

that is either owner-occupied or designated for sale is Ht �HR
t .

In our basic model, we assume that the price of land is constant through time:

qt = �q (11)

In reality land prices may vary in response to changes in the value of living in a particular

location (see Davis and Heathcote, 2007). For now we keep this constant, but later we

consider the implications of endogenizing land prices.

Once developers have built a house, it can either be rented or designated for sale, in

which case it will remain vacant for at least one period. Note that, since both new houses

and existing houses that are designated for sale yield zero �ow utility and since all agents

discount the future at the same rate, such houses have the same value to the sellers, Vt.
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We assume that the market for housing is characterized by directed search as proposed

by Moen (1997). Although all vacant houses are identical, they may, in principal, be sold

in a variety of submarkets indexed by i. Each submarket is distinguished by the house sale

price, P it ; to which sellers must commit if they enter. Let the number of buyer and sellers

who enter submarket i be denoted Bt and Sit , respectively. The number of matches per

period in submarket i is assumed to be determined by the common matching function,

Mt =M(B
i
t; S

i
t); (12)

where M is increasing both arguments and exhibits constant returns to scale. We let !it
denote the ratio of buyers to sellers in market i, which we refer to as the �tightness�of the

market. It follows that a buyer who enters sub-market i will �nd an appropriate vacant

house with probability

�it =
M(Bit; S

i
t)

Bit
= �(!it) (13)

where �0(�) < 0. Similarly, a seller who o¤ers his house for sale in submarket i will �nd a
buyer with probability


it = 
(!
i
t) =

M(Bit; S
i
t)

Sit
= !it�(!

i
t) (14)

where 
0(�) > 0.
It is costless to o¤er a vacant house for sale. It follows that for a seller to enter sub-market

i, he must expect to receive at least the value of the vacant house. That is

Vt = max
i

h

(!it)P

i
t + (1� 
(!it))�Et ~Vt+1

i
: (15)

We assume that P it > �EtVt+1 so that sellers always sell if o¤ered the price. We verify later

that this holds in equilibrium. Free entry of sellers into submarket i with price P it will drive


it = 
(!
i
t) down until (15) holds with equality.

Potential buyers incur zero search costs and each period must decide which submarket

to enter, if at all. We assume that renters can observe prices and market tightness in each

submarket. If they are matched they may choose to buy the house at price P it in which

case they become a homeowner in the next period. Otherwise they remain unmatched and

continue to search. The present value of being a renter, Wt, is therefore given by

Wt = u
R
t +max

i

�
�(!i)

�
�EtJt+1 � P i

�
+ (1� �(!i))�EtWt+1

	
: (16)

Note that we focus on choices of P i such that �EtJt+1 � P � �EtWt+1 > 0.
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Each period the total adult population of the economy increases by �Qt. These new

members of the adult population must decide where to search for a home. We assume that

once they decide to search in a location, they commit to eventually buy a house and remain

there until they receive a taste shock. When they move to a given location, they must

search for a house for at least one period, during which time they rent. We assume that

each member of the new population initially has a next best alternative which yields present

value utility ". Here " is distributed across the new members of the population according to

a stationary distribution function, G("); with support [0; �"].

There is a critical agent with relative preference, "ct , who is just indi¤erent between their

next-best alternative and becoming a potential buyer

"ct = �EtWt+1 (17)

The stock of perpetual renters is assumed to grow at a constant rate � and so is a constant

proportion of the total population given by f = Ft=Qt:

4 Equilibrium

A symmetric equilibrium is a sequence fJt; Vt;Wt; Pt; "
c
t ; Bt; Nt; Ht; !t, Lt, lt, wtg

1
t=0 such

that,given the evolution of fut; Qtg1t=0:
� Given house prices and wages of construction workers, there is free entry into construction:

�Et ~Vt+1 �
wt
�
+ �q; Ht+1 � Ht w.a.l.o.e. (18)

� The market for construction workers clears:

Lt = (Nt +Bt + Ft) lt: (19)

� Buyers and sellers are matched according to the matching function (48)
� Given prices, Pt, and market tightness, !t the value of being a homeowner satis�es (9).
� Free entry of sellers implies


(!it)P
i
t + (1� 
(!it))�EtVt+1 = Vt 8i (20)

� Free entry of buyers implies

uRt + �(!
i
t)
�
�EtJt+1 � P it

�
+ (1� �(!it))�EtWt+1 = Wt 8i (21)
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� New households enter the market optimally so that (17) and (28) are satis�ed.
� The stocks of rental versus owned housing must be such that

rt �m+ �EteVt+1 = Vt
HR
t = Bt + Ft

� Boundary conditions on value function rule out bubbles.

In equilibrium, (20) implies a mapping between the market tightness and the price across

sub-markets:


 (!(P )) =
Vt � �EtVt+1
P � �EtVt+1

: (22)

This condition implies that the probability that a vacant house is sold is lower in submarkets

with higher prices. Di¤erentiating yields

!0(P ) = � 
 (!(P ))


0(!) (P � �EtVt+1)
< 0: (23)

Since there is a one-to-one mapping between prices and tightness, from now on we will index

sub-markets by P:

Similarly, (21) implies another mapping between the market tightness and the price across

sub-markets:

�(!(P )) =
Wt � uRt � �EtWt+1

�EtJt+1 � P � �EtWt+1

: (24)

Di¤erentiating yields

!0(P ) =
�(!(P ))

�0(!) (�EtJt+1 � P � �EtWt+1)
< 0: (25)

In equilibrium prices in each submarket are such that it is not possible to create a new

submarket, which would attract buyers and in which vacant houses yield strictly higher

expected utility. This implies a point of tangency between (22) and (24). At the point of

tangency we have

�EtJt+1 � P � �EtWt+1

P � �EtVt+1
= � �(!(P ))

�0(!)

�

 (!(P ))


0(!)
(26)

The total surplus from a housing transaction is �EtJt+1 � �EtWt+1�EtVt+1: We can

therefore express the left hand side of (26) as s(P )=(1 � s(P )), where s(P ) denotes the
buyer�s share of the surplus in sub-market P . The right hand side of (26) is equal to the

14



ratio of the elasticity of the matching function w.r.t. the number of buyers to that w.r.t. to

the number of sellers. It follows that

Proposition 1 (Moen, 1997): In a competitive search equilibrium the share of the surplus
from house transactions that accrues to the buyer (seller) in each sub-market equals the

elasticity of the matching function w.r.t. the number of buyers (sellers) in that sub-market:

s(P ) = �(!(P )) =
B

M

@M

@B

The value of P which satis�es this is unique. Consequently, only one sub-market opens in

equilibrium.

In equilibrium the stocks of rental and ownable housing is such that the return to renting

a house for a period equals the expected gain from holding it vacant and for sale

rt �m = 
t (Pt � �EtVt+1) (27)

Potential buyers at date t+ 1 consist of those at date t who did not �nd a house in the

previous period and new members of the outside population whose alternative is below, "ct .

That is

Bt+1 = G("
c
t)�Qt + (1� �t)Bt: (28)

Note that even if "ct were constant over time, the stock of potential buyers, Bt, would grow

because Qt is increasing. Moreover, provided there is su¢ cient housing available, it follows

that the measure of homeowners evolves according to

Nt+1 = (1� �)Nt + �tBt. (29)

We focus on an equilibrium in which population growth is su¢ cient to ensure that con-

struction of houses is always positive. It follows from (10), (4) and (19) that the quantity of

new housing constructed in period t is given by

Ht+1 �Ht = � (Nt +Bt + Ft) �w�t (30)

Since Ht+1 > Ht it follows from (18) that

Ht+1 �Ht = �1+� (Nt +Bt + Ft) � (�EtVt+1 � �q)� : (31)
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Combining (17) and (28) we can express the evolution of the measure of potential buyers as

Bt+1 = G (�EtWt+1)�Qt + (1� �t)Bt: (32)

Here we can see that how the entry of potential buyers depends on their sensitivity to the

expected value of searching which is determined by the shape of G(�).

To obtain a stationary representation we normalize the state variables by dividing by the

total population of the economy, Qt. Using lower case letters to represent per capita values,

it follows that the dynamic equations for potential buyers per capita, owners per capita and

houses per capita, respectively, can be written as

(1 + �)bt+1 = �G (�EtWt+1) + (1� �(!t))bt (33)

(1 + �)nt+1 = (1� �)nt + �(!t)bt (34)

(1 + �)ht+1 = ht + ��
1+� (nt + bt + f) (�EtVt+1 � �q)� (35)

It also follows that the tightness of the housing market can be expressed as

!t =
bt

ht � hRt � nt
(36)

and market clearing in the rental market implies

hRt = bt + f

5 Stationary Equilibrium

In a stationary equilibrium there are no shocks so that yt = �y. Given stationary values for

W and !, the fraction of the total population who are potential buyers each period is given

by

b� =
�G (�W �)

�+ �(!�)
(37)

From (34) it follows that the steady-state fraction of the total population located in the city

is

n� =
�(!�)

�+ �
b�: (38)

and from (35), the housing stock per capita is

h� =
��1+� (n� + b� + f)

�
(�V � � �q)� (39)
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Lemma 1: In a stationary equilibrium, there exists a negative supply-side relationship be-
tween the value of a house for sale and market tightness given by

V � = V S(!�) =
1

�

�
�

��1+�

�
�+ � + 
 (!�)

(�+ �)!� + 
 (!�)

�� 1
�

+
�q

�
(40)

This relationship can be understood as follows. As the value of vacant housing rises, new

construction is stimulated and more houses become available for sale. This drives down the

ratio of potential buyers to houses for sale, !. This result relies on the fact that !
0(!)=
 < 1.

In the stationary equilibrium, the values of owners, potential buyers and vacant houses

and the steady state, must satisfy the stationary equations

J� = �uH + ��Z + ��V � + �(1� �)J� (41)

W � = �uR + �(!�)�(J� � P �) + (1� �(!�))�W � (42)

V � = 
 (!�)P � + (1� 
 (!�))�V � (43)

P � = �(1� s(!�)) (J� �W �) + �s(!�)V � (44)

r� = m+ 
 (!�) [P � � �V �] (45)

One can solve the �rst four equations of this system for J�, W �; V � and P �. After some

manipulation, this yields another relationship between the value of houses for sale and market

tightness:

Lemma 2: In a stationary equilibrium there exists a positive demand�side, relationship

between V � and !� given by

V � = V D(!�) =
�(1� s (!�))
 (!�)

�
�uH � �uR

�
(1� �) �(1� s (!�))
 (!�) + (1� � + ��) (1� � + �s (!�)�(!�)) (46)

Intuitively, a higher ratio of buyers to sellers has two e¤ects. Firstly it increases the rate at

which houses will sell, 
, which for a given selling price drives up the value of a vacant house.

It also lowers the rate at which houses are found which increases the gain from becoming an

owner. This raises the selling price of houses which also drives up the value of a house for

sale. Note that

�uH � �uR = zH � zR + r�

where r�

Proposition 1: Under certain restrictions on parameters, there exists a unique steady state
equilibrium.
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Figure 3: Steady State Equilibrium

Figure 3 depicts the stationary equilibrium at the intersection of (40) and (46).

6 Extensions

6.1 Endogenous Land Price

In our basic model, unit land prices are held �xed. It is straighforward to extend the model so

that land prices are endogenous. Speci�cally, we suppose the unit land price is an increasing

function of the stock of housing:

qt = q(ht) = �qh
�
t : (47)

7 Calibration

7.1 General Parameters

In this section we discuss the calibration scheme. We de�ne a period to equal one quarter.

We set � to re�ect an annual interest rate of 4% and � is chosen to match annual population

growth during the 1990s.7 We normalize so that �y = 1. Thus present values and prices are

all measured relative to the stationary income. We set � to match typical estimates of labour

supply elasticity (e.g. Altonji, 1986). The parameter � represents the labor productivity of

7Population growth has slowed somewhat in recent years.
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the construction sector. The rato of permits issued in the US each quarter to the numbers

of employees in residential construction is approximately 0.1. If the average working week is

35 hours this amounts to about 400 hours per quarter, which yields the number of permits

produced per hour worked equal to about 0.00025. The unit price of land, �q; is set so that

the relative share of land in the price of housing is 40% (see Davis and Palumbo, 2008). The

average price of a house is approximately is 3 times annual income or 12 times quarterly

income.

Table 3: General Parameters
Parameter Value Target

� 0.99 Annual real interest rate = 4%
� 0.003 Annual population growth rate = 1.2%
� 0.25 Elasticity of labour supply = 0.25
� 0.00025 Quarterly permits/construction employment (hours)
�q 4.8 Average land price-income ratio
� 4 Elasticity of cross-city income distribution at mean
m 0.0233 Average rent �average income ratio, r� = 0:14

zH � zR 0.03 Monthly housing premium = 1%

The only variable in steady state that depends on G(�) is the measure of searching
households per capita; b�. This is not something that is likely to be directly observable and

so these parameters are hard to identify. The dynamics of the model depend crucially on the

shape of G(�) in the vicinity of "c since this determines the responsiveness of new entrants
to changes in the value of search. Speci�cally, in our dynamic analysis this responsivenes

depends on the elasticity of the distribution evaluated at "c:

� =
"cG0("c)

G("c)
:

One approach to calibration is to use the elasticity of the distribution of average incomes

across cities. The assumption is that the value of living in a city is proportional to income.

In the steady state of our model this would be true if the only exogenous factor that varied

across cities were average incomes. Figure 4 depicts the cumulative distribution of per capita

incomes across all MSAs in the US. We compute the arc elasticity between two points on

this distribution that are half a standard deviation apart and equidistant from the mean.

This resulted in a value of � ' 4. Of course, there is considerable uncertainty as to whether
this is a reasonable value, so we consider the sensitivity of our results to changes in it.
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Figure 4: Distribution of per capita incomes across cities in 2000 ($000s)

7.2 Cobb�Douglas matching

Suppose the matching function takes a simple Cobb-Douglas form given by

Mt = �B
�
tS

1��
t ; (48)

where � > 0 and � 2 (0; 1). In this case, �(!) = � so the share of the surplus accruing to each
party in a housing transaction is constant. This implies that the competitive search model

is equivalent to a random search model with Nash Bargaining in which the Hosios condition

is assumed. In particular, the share of the surplus accruing to each party is not sensitive to

the tightness of the market.

We choose the remaining parameters so that several key steady state statistics match

their average counterparts in US data. In particular, �, �, � and � jointly determine the

steady state values of the house price, the vacancy rate, the average time it takes to buy a

house and the average time it takes to sell a house. We set the price of a house to be 3 times

annual income or 12 times quarterly income. We also assume that, in steady state, the time

taken to sell a house is equal to the time taken to buy. This is consistent with the �ndings

of Diaz and Jerez (2010).
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Average vacancy rates for the US economy and by MSA are available from the Census

Bureau�s Housing Vacancy Survey (HVS). In our model, houses that are vacant in equilibrium

are designated to be for sale. The HVS distinguishes the category �vacant units which are

for sale only�. In 2000, for example, this category constituted 1% of the overall housing

stock. Since owned homes constituted approximated two-thirds of the housing stock, this

corresponds to a home-owner vacancy rate of about 1.5%.8

However, housing units that are in the category �vacant units for rent�actually consist

of vacant units o¤ered for rent only and those o¤ered both for rent and sale. In 2000, for

example. this category constituted a further 2.5% of the overall housing stock.9 In our model,

vacant units are technically available for rent in the subsequent period, so it would make

sense to include those vacant units o¤ered for both rent and sale. In addition, only about

half of all vacant units are included in either of the categories (i.e. for sale only or for rent or

sale). The remainder include units that are held o¤ the market for various other reasons. For

example, this category includes vacant units located in a multi-unit structure which is for

sale. For these reasons, we consider �high vacancy rate�case, where we assume an additional

1% of the housing stock is vacant and for sale. This corresponds to a home-owner vacancy

rate of about 3%.

Under the assumption that ! = 1, in the steady state, h � hR = n + b. It follows that
the home-owner vacancy rate is

v =
h� hR � n
h� hR =

b

n+ b
: (49)

Using (38), this implies that


� = �� = (�+ �)
1� v
v
: (50)

Given the value of � from Table 1 and each of our targets for v, we choose � so that


 = � = 0:75. This implies that the average time on the market is about 4 months.

This may seem somewhat high given that according to the National Association of Real-

tors, the time taken to sell a typical house is about 8 weeks.10 This estimate of "time on the

market", however, is potentially misleading because houses may sometimes be strategically

8This number is close to the average over the period 1980-2008. However, more recently homeowner
vacancy rates have exceeded 2.5%

9Again, since rental units constitute about a third of the housing stock, this corresponds to a rental
vacancy rate of about 8%.
10There are varying estimates of the time to buy and the time to sell. Diaz and Jerez (2008) use 2 months

based on a report from the National Association of Realtors. Piazzesi and Schneider (2009) suggest using 6
months. Anglin and Arnott (1999) report estimates of up to 4 months.
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de-listed and quickly re-listed in order to reset the �days on market��eld in the MLS listing.

In their detailed analysis of the housing market in 34 Cook county (Illinois) suburbs over the

period 1992-2002, Levitt and Syverson (2008) compute time-to-sale by �summing across all

of a house�s listing periods that are separated by fewer than 180 days.�They estimate that

the average time on the market for a house that eventually sells is 94 days (3.07 months).

Moreover, in their sample of 127,000 houses, 22% of houses put up for sale never sell. In less

active markets it is likely that the time on the market is even longer.

Tables 4.1 and 4.2, give the parameter values implied for each vacancy rate target. Note

that the value of � required to hit these targets, given the other parameters, implies that

most of the surplus from housing transactions goes to the seller.

Table 4.1: Parameters � Cobb-Douglas Matching Function, Low Vacancy Rate
Parameter Value Target

�
�
�
�

0:7500
0:1864
0:0085
153:22

9>>=>>;
8>><>>:
Vacancy rate = 1:5%
Months to sell = 4
Months to buy = 4
P � = 12

Table 4.2: Parameters � Cobb-Douglas Matching Function, High Vacancy
Rate

Parameter Value Target
�
�
�
�

0:7500
0:1188
0:0202
154:85

9>>=>>;
8>><>>:
Vacancy rate = 3:0%
Months to sell = 4
Months to buy = 4
P � = 12

7.3 Generalized urn-ball matching

For matching functions other than Cobb�Douglas the equilibrium share of the surplus re-

ceived by the buyers and sellers are not generally constant. Here we consider an alternative

matching function given by

M(B; S) = S'(1� e��BS )

If � = 1, the matching probabilities are equivalent to the �urn-ball�matching process as-

sumed by Diaz and Jerez (2009). Here we assume a more general matching function in order

to calibrate the model to the same targets as before. This generalization could be motivated
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along the lines of Albrecht, Gauthier, and Vroman (2003), where � denotes the average num-

ber of applications to purchase made per period and ' indexes the e¤ort required to process

each application. Tables 5.1 and 5.2 contain the parameter values needed to achieve the

same targets as before for each vacancy rate case.

Table 5.1: Parameters � Urn-Ball Matching Function, Low Vacancy Rate
Parameter Value Target

'
�
�
�

0:8061
2:7610
0:0085
153:22

9>>=>>;
8>><>>:
Vacancy rate = 1:5%
Months to sell = 4
Months to buy = 4
P � = 12

Table 5.1: Parameters � Urn-Ball Matching Function, High Vacancy Rate
Parameter Value Target

'
�
�
�

0:7765
3:3840
0:0202
154:85

9>>=>>;
8>><>>:
Vacancy rate = 3:0%
Months to sell = 4
Months to buy = 4
P � = 12

The surplus accruing to the buyer for the urn-ball matching function is

s = �(!) =
�!

e�! � 1 ;

which is decreasing in market tightness, !. That is, as the ratio of buyers to sellers increases,

the share received by buyers falls.

7.4 No housing market frictions

As a benchmark, it is useful to compare our results to those from an economy with no

frictions in the housing market. In this economy there is no distinction between renting and

owning � new entrants can either rent or purchase a house immediately and move in. Since

households derive more utility from owning and construction costs are the same, the only

rental that will occur in equilibrium will be that by the perpetual renters. With no frictions,
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the dynamic system can be written as

(1 + �)bt+1 = �G (�EtJt+1 � Pt) (51)

(1 + �)nt+1 = (1� �)nt + bt (52)

(1 + �)ht+1 = ht + ��
1+� (nt + bt + f) (�EtPt+1 � �q)� (53)

ht = nt + bt + f (54)

Jt = uHt + �� (Z + Pt) + �(1� �)EtJt+1 (55)

The economy with no frictions is comparable to the model discussed by Glaeser and

Gyourko (2008). An important di¤erence is that they assume the outside alternative to

living in a the city yields a homogeneous payo¤. This e¤ectively implies immediate entry

of buyers until the price of housing adjusts enough to keep the value of entering constant.

This tends to generate high variance in both prices and construction in response to income

shocks. In our model there is a distribution of alternatives, so that the critical ouside

value rises helping to stem the �ow into the city. We can replicate Glaeser and Gyourko�s

equilibrium by assuming a value of � which is very high.

In the stationary equilibrium with no search frictions, the price is simply

P � =
1

�

�
�

��1+�

� 1
�

+
�q

�
(56)

Given the parameters in Table 6, we use this to derive the value of � such that P � = 12.

8 Qualitative Dynamics

We log�linearize the system around the steady�state which reduces it to a system of �rst�

order linear di¤erence equations. One can show that this system satisifes the conditions for

saddle-path stability. We numerically solve for the implied dynamics using a Generalized

Schur decomposition due to Klein (2007).

In this section, we use our calibrated economy to illustrate the key qualitative features of

the model�s dynamics. To do so we assume that the process followed by the log of income,

ln yt, is a simple AR(1) process with persistence parameter � = 0:98 and standard deviation

�" = 0:01. We use this example to illustrate that the model�s dynamics are not driven by the

dynamics of income (although, as we will see below, the hump-shaped dynamics of income

magnify the e¤ects to some extent). Note that in an asset pricing framework with no frictions
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such persistence cannot translate into momentum in house price changes. Indeed the impulse

response of house prices simply inherits the shape of that for housing dividends.11 In our

model with frictions this is not generally the case.

The implied impulse response functions following a shock to income illustrated in Figures

5 and 6 for the low and high steady�state vacancy rate scenarios. Each �gure depicts the

IRFs for prices, population, vacancies and market tightness for the model with no search

frictions and with search frictions under the two alternative matching functions.

In both scenarios and for both matching functions, the housing market frictions act so

as to generate a hump�shaped IRF for house prices. There are three key forces at play here:

(1) The initial rise in the value of living in a city generates an immediate increase in

search activity. However, it takes time for potential buyers to match with a house. Although

sales and the probability of selling rise immediately, construction of new housing takes time

to respond. Even if the value of searching subsequently declines (due to mean reversion),

the number of searchers continues to rise and the stock of vacancies declines. Consequently,

the ratio of buyers to sellers continues to rise in the short term, further driving up the rate

at which houses sell and hence the value of a vacant house. Since, in equilibrium, house

prices partly re�ect this value, they rise too. Eventually, the stock of potential buyers starts

to fall as they are absorbed into the owner-occupied housing market, and the decline in

vacancies slows (and eventually reverses) as construction rates catch up. This causes the

ratio of buyers to sellers to decline and prices eventually start to revert back towards their

steady state values.

(2) Given that prices are expected to rise initially in response to the shock, there is an

increase in the measure of unoccupied houses which are rented rather than put up for sale

immediately. This increased relative supply of rental housing keeps the rental rate from

rising too rapidly and induces the entry which drives the subsequent price appreciation.

This e¤ect tends to magnify the underlying momentum in house prices. The larger the

initial (steady state) vacancy rate, the bigger this e¤ect is. This can be seen by comparing

the house price movements with low and high vacancy rates. In the high vacancy rate case,

the price momentum and overall variance is much greater.

(3) In the urn-ball matching function case, the share of the surplus received by the buyer

falls as the buyer seller ratio rises.

11Glaeser and Gyourko (2006) consider an ARMA(1,1) process for ut, but house price still mean revert
very quickly.
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Figure 5: IRFs: AR(1) process with low vacancy rate

9 Quantitative Evaluation

So far we have used our calibrated model largely for illustrative purposes, given an arbitrary

shock process. But how does the model perform for a quantitatively relevant shock process?

To address this question requires us to compare the model output with the stylized facts

reported in Section 2. However, there is an important issue to address �rst: there is a

mismatch between the frequency of available city level income data and the period length

assumed in our calibrated model. The former is only available annually, whereas the latter

is calibrated to a quarterly frequency. One option would be to increase the length of a model

period to a year. However, this would imply that houses would remain vacant for at least a
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Figure 6: IRFs: AR(1) process with high vacancy rate

year, which is clearly counterfactual.

The approach taken here is to derive a quarterly process for income that has the same

key properties at annual frequencies as the data (see appendix). Using this together with

the transition function derived from the linearized model, we generated sample paths for the

key variables of the model. We used these to generate annual sample paths from which we

computed the key annual statistics documented in Tables 6.1 and 6.2. These are compared

to the same statistics for the US economy based on the SVECM discussed in Section 2.

Figure 7 shows the implied IRFs for the high vacancy rate case. Quantitatively, the IRFs

are much the same as in the AR(1) case. However, because of the hump-shaped process

followed by incomes in the data, both the momentum and mean-reversion in the model with
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search frictions is greater.

Table 6.1: Moments from the model with realistic income shocks (v = 1:5%)

�p=�y �n=�y �py �ny �1 �2 �3 �4
US Data (1980-2008) 1.6086 0.4343 0.8775 0.8453 0.7921 0.3872 0.0243 -0.2201
US Data (1980-2000) 1.5266 0.7038 0.9231 0.6216 0.7379 0.4224 0.1874 0.0370
� = 1
No search 0.5454 0.0567 0.7753 0.6767 0.0247 -0.0520 -0.0510 -0.0442
Cobb-Douglas 0.4366 0.0764 0.8386 0.5649 0.4832 0.2723 0.1323 0.0357
Urn ball 0.4409 0.0675 0.8491 0.5802 0.2513 0.0693 -0.0136 -0.0548
� = 2
No search 0.7767 0.0939 0.8066 0.6335 0.0249 -0.0519 -0.0487 -0.0468
Cobb-Douglas 0.6834 0.1239 0.8679 0.5474 0.2519 0.1149 0.0407 -0.0068
Urn ball 0.6945 0.1098 0.8747 0.5345 0.1451 0.0185 -0.0324 -0.0474
� = 4
No search 1.0213 0.1442 0.8497 0.5628 0.0238 -0.0468 -0.0429 -0.0403
Cobb-Douglas 0.9529 0.1906 0.8930 0.5066 0.1654 0.0531 -0.0009 -0.0275
Urn ball 0.9609 0.1758 0.8946 0.4902 0.0976 -0.0079 -0.0399 -0.0483
� = 8
No search 1.2337 0.2108 0.8917 0.4824 0.0192 -0.0532 -0.0399 -0.0382
Cobb-Douglas 1.1973 0.2845 0.9176 0.4497 0.1168 0.0173 -0.0206 -0.0433
Urn ball 1.2181 0.2547 0.9266 0.4103 0.0810 -0.0283 -0.0488 -0.0464
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Table 6.2: Moments from the model with realistic income shocks (v = 3%)

�p=�y �n=�y �py �ny �1 �2 �3 �4
US Data (1980-2008) 1.6086 0.4343 0.8775 0.8453 0.7921 0.3872 0.0243 -0.2201
US Data (1980-2000) 1.5266 0.7038 0.9231 0.6216 0.7379 0.4224 0.1874 0.0370
� = 1
No search 0.5454 0.0567 0.7753 0.6767 0.0247 -0.0520 -0.0510 -0.0442
Cobb-Douglas 0.8257 0.1470 0.7906 0.5778 0.7033 0.4291 0.2393 0.1035
Urn ball 0.6618 0.0895 0.7980 0.6497 0.4224 0.1857 0.0515 -0.0299
� = 2
No search 0.7767 0.0939 0.8066 0.6335 0.0249 -0.0519 -0.0487 -0.0468
Cobb-Douglas 1.0362 0.1867 0.8347 0.5805 0.3717 0.1970 0.0870 0.0209
Urn ball 0.8859 0.1255 0.8277 0.6222 0.2193 0.0588 -0.0101 -0.0444
� = 4
No search 1.0213 0.1442 0.8497 0.5628 0.0238 -0.0468 -0.0429 -0.0403
Cobb-Douglas 1.2343 0.2327 0.8696 0.5568 0.2167 0.0865 0.0247 -0.0133
Urn ball 1.2259 0.2328 0.8694 0.5567 0.2220 0.0900 0.0286 -0.0122
� = 8
No search 1.2337 0.2108 0.8917 0.4824 0.0192 -0.0532 -0.0399 -0.0382
Cobb-Douglas 1.3888 0.2890 0.9020 0.5060 0.1547 0.0384 -0.0066 -0.0303
Urn ball 1.3830 0.2928 0.8994 0.5108 0.1467 0.0403 -0.0051 -0.0372

10 Concluding Remarks

Qualitatively, adding competitive search into a dynamic model of housing markets with

endogenous entry and construction helps us rationalize movements in house prices. However,

for a matching function that implies constant elasticities with respect to tightness, adding

search frictions tends to dampen the volatility of prices. Allowing for alternative matching

functions such as the urn ball variety, which implies the surplus share depends on market

tightness, retains the basic shape of the response of prices but implies greater volatility. A

calibrated version of our model captures the qualitative movements in the date quite well,

but generally understates them quantitatively.
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Figure 7: IRFs: Realistic income shocks process, high vacancy rate, � = 4

11 Appendix

11.0.1 Proofs and Derivations

Proof of Proposition 1: Equation (26) can be expressed as

s

1� s =
M(B; S)

B @M
@S

�
S
B

�2
,

M(B; S)

S @M
@B

=
B
M
@M
@B

S
M
@M
@S

=
�(!)

1� �(!)

The result follows. Note that s0(P ) < 0 and !0(P ) < 0. If �0(!) < 0, the point of tangency

must be unique.
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Proof of Lemma 1: Substituting (37), (38), (39) into (36) yields

!� =
b�

h� � n� (57)

!� =
�+ �

��1+�

�
(�+ � + �) (�V � � �q)� � �(!�)

(58)

��1+�

�
(�V � � �q)� =

�+ � + 
(!�)

(�+ �)!� + 
(!�)
(59)

Re-arranging yields (43). The the sign of the derivative of V S(�) is a with respect to !
depends on the sign of

((�+ �)!� + 
(!�)) 
0(!�)� (�+ � + 
(!�)) ((�+ �) + 
0(!�))
= (�+ �) [!�
0(!�)� 
(!�)� �� � � 
0(!�)]

A su¢ cient condition for this to be negative is !�
0(!�) < 
(!� _). This must be true for any

CRS matching function, since it implies that 
(!).is homogenous of degress less than 1.

Proof of Lemma 2: We can express (42) - (43) as

[1� �(1� �)] J� = �uH + ��Z + ��V � (60)

[1� (1� �(!�))�]W � = �uR + �(!�)�J� � �(!�)�P � (61)

P � = �(1� s)J� � �(1� s)W � + �sV � (62)

P � =
[1� (1� 
 (!�))�]


 (!�)
V � (63)

Substituting out P � yields

J� =
�uH + ��Z + ��V �

1� �(1� �) (64)

[1� (1� �)�]W � = �uR + ��J� � �� [1� (1� 
)�]



V � (65)

[1� (1� 
)� � 
�s]V � = 
�(1� s)J� � 
�(1� s)W � (66)

Substituting out J� yields

W � =
�uR

[1� (1� �)�] + ��
�

�uH + ��Z + ��V �

[1� (1� �)�] (1� �(1� �))

�
� �� [1� (1� 
)�]

[1� (1� �)�] 
V
�(67)

[1� (1� 
)� � 
�s]V � = 
�(1� s)
�
�uH + ��Z + ��V �

1� �(1� �)

�
� 
�(1� s)W � (68)
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Finally, substituting out W � we have�
1� (1� 
)� � 
�s� 
�(1� s)��

1� �(1� �) +

�(1� s)����

[1� (1� �)�] (1� �(1� �)) � 
�(1� s)��
[1� (1� 
)�]
[1� (1� �)�] 


�
V �

=

�(1� s)

[1� (1� �)�]

24 �uH + ��
�
�uR

1��

�
1� � + �� (1� �)� �uR

35
Re-arranging yields (46). Dividing the top and bottom by (1� s(!�))
(w�) etc. yields

V � =
�
�
�uH � �uR

�
(1��)(1��+��)
(1�s(!�))
(!�) + (1� �) � + (1� � + ��) �

s(!�)
(1�s(!�))!�

(69)

Since 
0(w�) > 0 and s0(!) � 0, this is clearly increasing in !�.

Proof of Proposition 2: First observe that since V S(!) is decreasing in !� and V D(!�) is
increasing in !�, if a steady-state equilibrium exists it must be unique. Existence basically

requires that the curves intersect at a value of !� such that 
(!�) < 1 and �(!�) < 1. The

implied minimum and maximum values of ! are given by �(!) = 1 and 
(!) = 1: Then an

(interior) equilibrium will exist if V D(!) < V S (!) and V D(!) > V S (!).

Solving the dynamic system: The dynamic system is given by

ln yt = (1� �) ln �y +
TX
i=1

�i ln yt�i + st

(1 + �)nt+1 = nt + �(!t)bt

(1 + �)ht+1 = ht + ��
1+� (nt + bt + f) (�EtVt+1 � �q)�

(1 + �) bt+1 = �G (�EtWt+1) + (1� �(!t)) bt

!t =
bt

ht � bt � f � nt
Jt = yt + xt + z

H + � [� (Z + EtVt+1) + (1� �)EtJt+1]
Wt = yt + xt + z

R � rt + �(!t) (�EtJt+1 � Pt) + (1� �(!t))�EtWt+1

Vt = 
(!t)Pt + (1� 
(!t))�EtVt+1
Pt = �(1� s(!t))Et (Jt+1 �Wt+1) + �s(!t)EtVt+1

rt = m+ 
(!t) (Pt � �EtVt+1)
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11.1 Stationary Equilibrium with no search

In a stationary equilibrium there are no shocks so that uHt = �uH . Housing market clearing

implies

h� = n� + b�

and it follows directly that the stationary equilibrium price is

P � =
1

�

�
�

��1+�

� 1
�

+
�q

�
(70)

The value of being a homeowner is then

J� =
�uH + ��Z + ��P �

1� �(1� �) (71)

Given stationary values for J and P , the new entrants per period is

b� =
�

1 + �
G (�J� � P �) (72)

and the steady-state fraction of the total population located in the city is

n� =
1

�+ �
b�: (73)

Finally, the housing stock per capita is

h� =
��1+� (n� + b�)

�
(�P � � �q)� (74)

11.2 House Prices at Quarterly Frequency

Here we use a panel of 45 cities with quarterly data between 1977 and 2008. The �rst column

of Table A1 shows the estimates for the full sample. We found that 5 lags of the growth in

prices were necessary and su¢ cient to describe the evolution of prices.

Table A1: Quarterly Panel (�xed e¤ect) estimates for price process
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Parameter Full Sample Coastal Cities Inland Cities Truncated Sample
(1977-2008) (1977-2008) (1977-2008) (1977-2000)
45 cities 20 cities 25 cities 45 cities

�1 0.09 (6.78) 0.13 (6.43) -0.01 (0.65) 0.01 (0.64)
�2 0.21 (16.11) 0.21 (10.52) 0.17 (9.79) 0.17 (11.46)
�3 0.21 (15.74) 0.13 (6.45) 0.26 (15.37) 0.19 (12.54)
�4 0.20 (16.11) 0.20 (10.42) 0.24 (14.00) 0.21 (14.86)
�5 0.05 (4.05) 0.02 (0.89) 0.13 (7.28) 0.07 (5.09)
� -0.02 (15.74) -0.03 (10.69) -0.03 (12.08) -0.03 (12.66)
City dummies Yes Yes Yes Yes
Time dummies Yes Yes Yes Yes
�" 0.016 0.016 0.014 0.017
�� 0.002 0.002 0.002 0.002
� 0.012 0.012 0.014 0.011
R2 within 0.50 0.61 0.42 0.35
R2 between 0.68 0.34 0.63 0.71
R2 overall 0.50 0.61 0.43 0.35
# of obs. 5760 2560 3200 4320

Note: t-statistics in parenthesis

Given these estimates we extract an AR(6) process describing the relative price dynamics

of the typical city. The implied impulse response function is illustrated in the top panel of

Figure 8. As can be seen, the house prices dynamics can be characterized as exhibiting a

hump-shaped pattern, with initial autocorrelation and subsequent mean-reversion. The peak

in the IRF occurs after about 3 years and after about 6 years the autocorrelation becomes

negative.

11.3 Translation of the shock process from Annual to Quarterly

If we now think of a period as a quarter, we can write an annual AR(2) process as

xt = b1xt�4 + b2xt�8 + "t:

Let yt = xt�4. Then we can write this as a stacked system given by

Xt = BXt�4 + et�
xt
yt

�
=

�
b1 b2
1 0

� �
xt�4
yt�4

�
+

�
"t
0

�
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Figure 8: IRFs for quarterly prices
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Now consider a VAR(1) given by

Xt = AXt�1 + vt

where vt = [vt 0]0. Iterating on this yields

Xt = A
4Xt�4 +A

3vt�3 +A
2vt�2 +Avt�1 + vt

It follows that A = B
1
4 and et = A3vt�3 + A

2vt�2 + Avt�1 + vt. We can decompose the

VAR(1) as

xt = a11xt�1 + a12yt�1 + vt

yt = a21xt�1 + a22yt�1

But since yt = xt�4 this is

xt = a11xt�1 + a12xt�5 + vt

xt�4 = a21xt�1 + a22xt�5

Substituting out xt�5 yields

xt = a11xt�1 +
a12
a22

(xt�4 � a21xt�1 � v2t) + vt

xt =

�
a11 �

a12a21
a22

�
xt�1 +

a12
a22
xt�4 + vt

Thus the AR(2) process at the annual frequency translates into a particular AR(4) process

at the quarterly frequency. There is of course a loss of information.

For incomes the implied AR(4) process is

yt = 1:30yt�1 � 0:152yt�4 + et

with �e = 0:0091: Figure 2 shows the impulse response function for a shock such that yt
reaches the same point during the 4th quarter as it does after 1 year for the annual IRF

above. The peak occurs after about 2 years.
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